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Abstract 29 

 Ecologists often use dispersion metrics and statistical hypothesis testing to infer 30 

processes of community formation such as environmental filtering, competitive exclusion, and 31 

neutral species assembly. These metrics have limited power in inferring assembly models 32 

because they rely on often-violated assumptions. We adapt a model of phenotypic similarity and 33 

repulsion to simulate the process of community assembly via environmental filtering and 34 

competitive exclusion, all while parameterizing the strength of the respective ecological 35 

processes. We then use random forests and approximate Bayesian computation to distinguish 36 

between these models. We find that our approach is more accurate than using dispersion metrics 37 

and accounts for uncertainty. We also demonstrate that the parameter determining the strength of 38 

the assembly processes can be accurately estimated. This approach is available in the R package 39 

CAMI; Community Assembly Model Inference. We demonstrate the effectiveness of CAMI 40 

using an example of plant communities living on lava flow islands. 41 

42 
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Introduction 43 

 Though methods to infer community assembly vary, many approaches share a central 44 

idea based on phylogenetics: the pattern of shared evolutionary history between species that 45 

coexist provides insight into the historical processes that assembled the community (Brooks and 46 

McLennan 1991; Losos 1996; Grandcolas 1998; Webb 2000; Thompson et al. 2001; Webb et al. 47 

2002). To gain insight into the assembly process, a collection of metrics have been used to 48 

characterize the patterns of diversity in a community using species/genus ratios and other higher 49 

taxonomic diversity metrics (Magurran 1988; Faith 1992; Weiher & Keddy 1995; Gotelli & 50 

Colwell 2001). Though informative, these patterns often provide little information about the 51 

processes that generated them (Peters 1991). Functional traits provide information about 52 

diversity and niche space within a community (Macarthur & Levins 1967; Weiher et al. 1999; 53 

McGill et al. 2006), and have long been used to understand resource partitioning between 54 

species, as well as coexistence (Cornwell et al. 2006; Kraft et al. 2007, 2015; de Bello et al. 55 

2009). Though the collection and dimensionality of trait data is at times insurmountable, turning 56 

to phylogenetic information as a proxy for functional traits was, and is, a viable alternative. 57 

Measures of phylogenetic diversity and dispersion, which carry more information than higher 58 

taxonomic categories and hopefully, encompass trait information, have become widely used in 59 

community ecology to infer community assembly processes (Webb 2000; Webb et al. 2002a, 60 

2008; Cavender-Bares et al. 2006; Kembel et al. 2010; Miller et al. 2017). These metrics focus 61 

on identifying alternative models of community assembly, environmental filtering and 62 

competitive exclusion. Environmental filtering occurs when the abiotic properties of an 63 

environment physically keep a species from existing there (Bazzaz 1991). Competitive exclusion 64 

describes when species that share the same or similar niche space compete for resources resulting 65 



 5 

in some species being excluded from the community altogether, also referred to as limiting 66 

similarity (Macarthur & Levins 1967). To determine whether non-neutral processes have 67 

predominantly influenced assembly patterns, Phylogenetic dispersion metrics, such as mean 68 

pairwise distance (MPD) and mean nearest-taxon distance (MNTD) – which can be calculated 69 

using phylogenetic branch lengths, number of nodal distances, and phenotypic distances – are 70 

used to compare observed community dispersion to null expectations (Webb 2000; Gotelli & 71 

Colwell 2001; Webb et al. 2002a, 2008; Kembel et al. 2010). 72 

Inferences of the assembly process using dispersion metrics are determined in a statistical 73 

hypothesis testing framework using several randomly generated null models (Conner & 74 

Simberloff 1979; Gotelli & Graves 1996). Commonly, the standard effect size of dispersion 75 

metrics, commonly known as net relatedness index (NRI) for MPD and nearest taxon index 76 

(NTI) for MNTD (Webb 2000), are used as the test statistic to measure significance of the 77 

observed community compared to null expectations of community dispersion if the community 78 

were assembled randomly or neutrally. However, inference is conditional on the assumption that 79 

the relevant phenotypes for the environment or competition are phylogenetically conserved 80 

amongst the species in the community, or harbor strong phylogenetic signal within the 81 

community of focus. If this assumption is true, and environmental filtering has predominately 82 

impacted the assembly process, the phylogenetic data are expected to be significantly clustered, 83 

or under-dispersed, in the local community. Likewise, when considering a community assembled 84 

by competitive exclusion, we expect to see significantly less shared evolutionary history as 85 

compared to null expectations, or significant phylogenetic over-dispersion (Weiher & Keddy 86 

1995; Webb 2000; Cavender-Bares et al. 2006). 87 



 6 

The dubious assumption of strong phylogenetic signal between the phylogeny and 88 

phenotypes is a main critique of these approaches. Kraft et al. (2007) showed via simulations 89 

that when the assumption of phylogenetically conserved traits was even mildly violated, 90 

phylogenetic dispersion metrics were inadequate to infer community assembly processes. 91 

Furthermore, this violation of assumptions can, in fact, lead to patterns contrary to those 92 

expected for a given assembly process (Weiher & Keddy 1995; Cavender-Bares et al. 2009; 93 

Mayfield & Levine 2010; HilleRisLambers et al. 2012; Gerhold et al. 2015). To circumvent this 94 

issue, one can assess whether or not functional traits of interest for the community are 95 

phylogenetically conserved, and then use that information to guide the inference procedure 96 

(Kraft 2007, Kembel et al. 2010). Though, if functional trait information is available, it is 97 

typically used in consort with phylogenetic information because using phenotypic information 98 

alone relies on expectations for how the phenotypes should be distributed in the community to 99 

infer non-neutral processes (de Bello et al. 2009; Graham et al. 2012). While in many instances 100 

both phylogenetic dispersion and phenotypic dispersion are measured and analyzed in a similar 101 

framework (HilleRisLambers et al. 2012), an approach that integrates both to simultaneously 102 

estimate support for alternative assembly models is lacking. 103 

Finally, the inference procedure using dispersion metrics relies on statistical hypothesis 104 

testing, and therefore, on how well the null model represents neutral expectations. Currently, 105 

there exists an extensive number of null models that can be used to infer assembly processes, 106 

ranging from simple null models based on random shuffling of taxon labels (Gotelli & Graves 107 

1996; Webb et al. 2002; Cornwell et al. 2006; Kembel et al. 2010), to incredibly dynamic null 108 

models (Pigot & Etienne 2015) and analytical frameworks (Stegen et al. 2013) that incorporate 109 

macroevolutionary processes such as speciation, dispersal, and extinction. There also exist 110 
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simulation software (Münkemüller & Gallien 2015) to simulate the process of assembly with 111 

trait information mediating which species enter the community. However, even with more 112 

dynamic null models and simulation power, relying on statistical hypothesis testing and passing a 113 

significance threshold to infer an assembly processes is problematic. In part due to the sensitivity 114 

between p-values and sample size and how we interpret “significance”, but also because each 115 

analysis of a particular data type and test statistic result in a measure of significance. Researchers 116 

are then responsible for integrating across a suit of hypothesis tests, some that may be significant 117 

while others are not, in order to draw an inference. Arguably, a model-based inference procedure 118 

is necessary to incorporate all data at once, rank models of community assembly by their relative 119 

support, and importantly, incorporate uncertainty in model inference. In this model-based 120 

inference procedure, we can simultaneously weigh the support for each community assembly 121 

model while also considering both phylogenetic and phenotypic data in the regional and local 122 

community. When each model garners a portion of support given the data, we are able to 123 

understand when a dominant signal of non-neutrality or neutral is present in the data, whether 124 

two process are acting simultaneously (i.e. split support between models). or when the data lack 125 

signal to identify a dominant process (i.e. relatively equal support across all models). 126 

 Several approaches have implemented model-based inference procedures for community 127 

assembly already (Van Der Plas et al. 2015; Munoz et al. 2018; Pontarp et al. 2019), paving the 128 

way to measuring the relative impact of different processes on community assembly. However, 129 

we still lack a method that integrates both phylogenetic and phenotypic information in a species-130 

based model where the strength of the non-neutral processes can be estimated. Here, we develop 131 

a stochastic algorithm to simulate communities assembled under environmental filtering and 132 

competitive exclusion processes by adapting coevolutionary phenotypic matching and repulsion 133 
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models. In doing this, we avoid having to make any assumptions about how the traits have 134 

evolved along the phylogeny. Our approach simultaneously considers the phylogenetic and 135 

phenotypic information from species in the local and regional communities and parameterizes 136 

the relative strength of the assembly processes realizing strong to mild non-neutral assembly. 137 

Finally, we implement a model-selection inference procedure by using two approximate 138 

approaches, random forests (RF; Breiman 2001; Breiman & Cutler 2007) and approximate 139 

Bayesian computation (ABC; Csilléry et al. 2010). While we acknowledge these processes are 140 

often happening simultaneously in nature, when investigating a targeted trait hypothesized to 141 

play a role in the non-neutral assembly of a particular community, the model selection inference 142 

procedure holds power to detect the most conspicuous process, if applicable. We are using both 143 

model selection approaches because, though RF has been used for model selection in other 144 

contexts, it has not been used to distinguish between community assembly models like ABC has 145 

(Van Der Plas et al. 2015; Munoz et al. 2018; Pontarp et al. 2019); thus we document a 146 

comparison and collaboration of the two here. 147 

We make our approach available as an R package, CAMI, Community Assembly Model 148 

Inference (github.com/ruffleymr/CAMI). To demonstrate the effectiveness of CAMI, we use 149 

power analysis to show that our approach more accurately infers models of community assembly 150 

compared to hypothesis testing using dispersion metrics. We also show that the parameter 151 

governing the strength of the assembly processes can be accurately estimated using ABC. 152 

Finally, we demonstrate community assembly model inference and parameter estimation using 153 

CAMI, with an empirical example from the plant communities that exist on lava flow islands in 154 

Craters of the Moon National Monument and Preserve. 155 

 156 
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Methods 157 

1.0 Community Assembly Models 158 

We focus on three community assembly models: neutral, environmental filtering, and 159 

competitive exclusion. For all models, we assume communities are assembled from a regional 160 

pool of species where each species in the regional pool is equally likely to colonize the local 161 

community. We also assume the phylogenetic relationships between all species are known and 162 

that there is continuous trait information for all species. We simulate the assembly of a local 163 

community under one of the three models. Under the neutral model of assembly, all species in 164 

the regional community have an equal probability of persisting in the local community (Hubbell 165 

2001; Rosindell et al. 2012). The probability that a given species survives, or persists, in a non-166 

neutrally assembled community, however, is not equal for all species, and these varying 167 

probabilities of persistence drive the alternative models of community assembly. 168 

 To model environmental filtering, we adapted an approach from coevolutionary models 169 

(Nuismer et al. 2013; Nuismer & Harmon 2015) to relate trait interactions between species and 170 

their environment with the probability of surviving in a community. For interactions between 171 

species and their environment, we implement a phenotypic matching mechanism where the 172 

probability, 𝑃(𝑧$, 𝑧&) of a species persisting in the local community increases when the 173 

phenotype of the species 𝑧$ and the optimal phenotype of the environment 𝑧& are more similar: 174 

𝑃(𝑧$, 𝑧&) 	= 𝐸𝑥𝑝 -− /
01
(𝑧$ −	𝑧&)23        (1) 175 

The probability a species with phenotype, 𝑧$, persists in an environment with a phenotypic 176 

optimum, 𝑧&, also depends on the strength of the environmental filtering, 𝑡&. When 	𝑡& is large, 177 

filtering has a mild effect in that species are less penalized for having phenotypes dissimilar to 178 
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the environmental optimum; whereas when 	𝑡&	is small, the filtering effect is stronger because 179 

species are heavily penalized for phenotypes dissimilar to the optimum. 180 

To model competitive exclusion, the probability, 𝑃(𝑧$, 𝑧̅), of a species persisting in the 181 

local community increases as the phenotype of the species 𝑧$ and the mean phenotype of the 182 

local community 𝑧 ̅are more dissimilar. 183 

𝑃(𝑧$, 𝑧̅) = 1 − 𝐸𝑥𝑝 -− /
07
(𝑧$ −	𝑧̅)23        (2) 184 

Here, the probability a species with phenotype, 𝑧$, persists in a community with mean 185 

phenotypic, 𝑧,̅ depends on the strength of competition between species, 𝑡8 . When 𝑡8	is large, 186 

competition has a strong effect in that species are heavily penalized for having phenotypes 187 

similar to the mean phenotype of the local community. When 𝑡8  is small, competition is weaker 188 

in that species are less penalized for having a phenotype similar to the mean phenotype of the 189 

community. 190 

 191 

2.0 Data Simulation 192 

For a single simulation of community assembly, first, a regional community phylogeny is 193 

simulated under a constant birth-death process with speciation, l, and extinction, µ, parameters, 194 

until the desired number of regional species, 𝑁, is reached (Fig. 1; Stadler 2011). Traits are 195 

evolved on the regional phylogeny, one for each species, (Revell 2012) under either a Brownian 196 

Motion (BM; Felsenstein 1985) or Ornstein-Uhlenbeck (OU) model of trait evolution (Hansen 197 

1997; Butler & King 2004) characterized by the rate of character change, 𝜎2,  and, for OU 198 

models, the “strength of pull” to the trait optimum, a (Fig. 1). BM evolves traits in a way that 199 

mimics drift over macroevolutionary timescales and OU does the same only it includes a 200 

selective regime in which traits are “pulled” toward a phenotypic optimum. We simulate under 201 
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these different models of trait evolution because they do not enforce the assumption that trait 202 

differences are correlated to phylogenic differences and create more variability in how the data 203 

behave under the assembly models. Once the regional community exits with phylogenetic 204 

relationships and trait information, the assembly of the species in the local community can begin. 205 

The assembly process uses the probabilities of species persisting in local communities, 206 

𝑃(𝑧$, 𝑧&)	for environmental filtering and 𝑃(𝑧$, 𝑧̅) for competitive exclusion, and a rejection 207 

algorithm to stochastically assemble the local community. When simulating under a competition 208 

model, the strength of competition between species, 𝑡8 , parameterizes the assembly process. 209 

Likewise, under an environmental filtering model, the strength of the environmental filter, 𝑡&, 210 

along with the environmental phenotypic optimum, 𝑧&, parameterizes the assembly process. For 211 

the investigative simulations, the phenotypic optimum is determined by a random value drawn 212 

from the simulated traits of the regional community, and it remains constant throughout an entire 213 

simulation. When a species colonizes the community, the probability of persistence is calculated, 214 

and the species is included in the local community if that probability is greater than a uniform 215 

random number between 0 and 1 (Fig. 1). Otherwise, the species is rejected from being in the 216 

local community. This stochasticity included in the algorithm is more apparent in the emergent 217 

data when the ecological strength parameter is imposing weak non-neutral assembly. When a 218 

species is rejected from entering the community, it remains in the regional pool and is still able 219 

to colonize the local community again. In this case, the probability of persistence is recalculated, 220 

and the species has another chance to pass the rejection algorithm. As in the neutral model, the 221 

assembly process ends when the local community has reached species richness capacity, 𝑛. 222 

All parameters mentioned are either fixed or drawn from a prior distribution. Information 223 

regarding the default prior distributions and fixed values for each parameter can be found in 224 
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Supplemental Table 1 or in the help documentation for the R package ‘CAMI’ 225 

(github.com/ruffleymr/CAMI). Any parameter mentioned, along with prior distributions, can 226 

also be set by the user. In simulations described here, the default prior distributions were used 227 

unless otherwise stated. 228 

 229 

3.0 Inference Procedure 230 

For a single simulation of community assembly, a regional and local phylogeny and a 231 

regional and local distribution of trait values is returned. This information is summarized in 30 232 

different summary statistics that capture information about the phylogeny, trait distributions, and 233 

phylogenetic signal within the traits of the local community (Komsta & Novomestky 2015, 234 

Janzen et al. 2015; Pennell et al. 2015; Deevi et al. 2016, Kendall et al. 2018, Paradis & Schliep 235 

2018; Supplemental Table 2). These summary statistics are then used for model selection and 236 

parameter estimation. 237 

To predict model probabilities from empirical data, we used two model selection 238 

approaches. The first approach uses a machine learning classification algorithm, random forests 239 

(RF; Breiman 1999; Liaw & Wiener 2002) to build a ‘forest’ of classification trees using the 240 

simulated summary statistics as predictor variables and the community assembly models as 241 

response variables. As a classifier is being built, RF is simultaneously measuring the ‘Out of 242 

Bag’ (OoB) error rates of the classifier by cross-validating each classification tree with a subset 243 

of the original data that was not used to make the tree in question. The OoB error rates measure 244 

how often the data are incorrectly classified. Additionally, RF quantifies the effect of including 245 

each summary statistic on the accuracy of the classifier through two variable importance 246 
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measures, Mean Decrease in Accuracy (MDA) and Mean decrease in Gini Index (GINI) 247 

(Breiman 2002). 248 

RF is generally robust to noisy and/or overpowering predictor variables because each tree 249 

in the forest is constructed with only a subset of the data and multiple predictor variables are 250 

used at each node (Breiman & Cutler 2007). Our second approach, ABC, relies on the Euclidean 251 

distance between observed and simulated summary statistics to accept simulations into the 252 

posterior probability distribution of the models given the data (Csilléry et al. 2010). The support 253 

for each model then comes from the proportion of simulations from each model accepted into the 254 

posterior probability distribution. If there are summary statistics included that add a lot of noise 255 

to the classification process, ABC will lose power in distinguishing support between models. RF 256 

is able to measure which summary statistics are the most influential in distinguishing between 257 

the models, through importance measures such as MDA and GINI, thus we used this information 258 

to select a subset of 10 summary statistics to use in ABC model selection. ABC then predicts 259 

model probabilities using those statistics, a rejection algorithm, and a tolerance of 0.001 (Csilléry 260 

et al. 2012). The performance of ABC in classifying the data can be measured using a leave-one-261 

out cross validation approach for model selection which results in model misclassification rates 262 

for each model. 263 

 264 

4.0 Power Analyses 265 

We compared the accuracy of three approaches in identifying community assembly 266 

models from the data simulated under the three community assembly models in CAMI. The first 267 

approach follows previous work and uses dispersion metrics, such as MPD and MNTD 268 

(standardized as NRI and NTI), in statistical hypothesis testing to infer the community assembly 269 
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process from phylogenetic and phenotypic information, separately (Webb 2000; Cornwell et al. 270 

2006; Kembel et al. 2010; Kraft & Ackerly 2010). For MNTD calculated using phenotypic 271 

information, the nearest neighbor is the species closest in trait space (Ricklefs & Travis 1980; 272 

Graham et al. 2012; Swenson et al. 2012).  273 

The second and third inference approaches are approximate model selection techniques 274 

used in CAMI, RF (Breiman 1999; Liaw & Wiener 2002) and ABC (Toni et al. 2009; Csilléry et 275 

al. 2010, 2012). We measured the power of each approach in correctly classifying community 276 

assembly data (see sections 1.0 and 2.0) through the OoB error rates for RF and cross validations 277 

for ABC. We performed these power analyses for a range of community sizes to assess whether 278 

the power of any of the approaches increased with sample size of the regional/local community, 279 

which in this case is species richness. For data to classify, we simulated 1,000 datasets in CAMI 280 

under each community assembly model for 20 different regional community sample sizes 281 

ranging from 50 to 1000, increasing by increments of 50, with the local community always half 282 

the size of the regional. For more details on each of the model identification techniques, refer to 283 

supplemental methods section 2. 284 

We also investigated whether RF and ABC can be used to accurately infer the model of 285 

community and trait evolution simultaneously. For this, we performed the power analysis as 286 

described above, only here we classified six models (neutral, filtering, and competition models 287 

under both BM and OU models of trait evolution) rather than just the three community assembly 288 

models. 289 

 290 

5.0 Parameter Estimation 291 
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We measured the ability of this approach to estimate the strength of the assembly 292 

process, 𝑡&	and	𝑡8 , under non-neutral models of community assembly, environmental filtering 293 

and competitive exclusion. For both models, we attempted parameter estimation when the traits 294 

were simulated under a BM and an OU model of trait evolution. We also attempted parameter 295 

estimation for two sizes of regional communities, 200 and 800, with corresponding local 296 

community sizes of 100 and 400. We simulated 50,000 community assembly datasets under each 297 

condition to serve as the reference dataset for parameter estimation. For details on these 298 

simulations, reference the supplemental methods section 3. 299 

We simulated 100 datasets each for 13 different values of 𝑡& and 𝑡8 , ranging from 1 to 60 300 

in increasing increments of 5 (see supplemental methods section 3 for other parameter details). 301 

These simulated datasets would serve as the “observed” datasets to use for parameter estimation, 302 

in which case we know what the true value of 𝑡& and 𝑡8  are. To measure not only how accurately 303 

𝑡& and 𝑡8  are estimated, but whether all values can be estimated accurately, we performed 304 

parameter estimation for each of the simulated datasets. For this, we assumed that data simulated 305 

under environmental filtering and competitive exclusion models were correctly classified as 306 

those models. We repeated this procedure increasing the sample size of the regional and local 307 

community to measure whether 𝑡& and 𝑡8  estimates improved with increased sample size. 308 

 309 

6.0 Empirical System 310 

 Craters of the Moon National Monument and Preserve (CRMO) is a volcanic landscape 311 

in southern Idaho. The overlapping basalt lava flows formed along vents in the Great Rift 312 

between 2 – 15 KYA (Kuntz et al. 1982, 1986). Within the lava flows are kipukas – islands of 313 

vegetation that are completely surrounded by uninhabitable lava (Vandergast & Gillespie 2004). 314 
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Given their isolated nature and recent colonization, the plants on kipukas are an ideal system for 315 

studying community assembly. We opted to use height as our functional trait of interest because 316 

it is known to be an important proxy for resource partitioning and competitive ability in plants 317 

(Westoby 1998; Weiher et al. 1999; Cornwell et al. 2014). 318 

The regional phylogeny was constructed for 113 species that occur in the CRMO by 319 

dropping non-CRMO species (79,768) from a Spermatophyta phylogeny (Smith & Brown 2017). 320 

Likewise, the local community phylogeny was constructed by dropping non-kipuka community 321 

species from the regional phylogeny, resulting in 63 local species (Supplemental Table 8). If a 322 

particular species was not in the Spermatophyta phylogeny, we used a random relative in the 323 

same genus (Qian & Jin 2016). In addition to the total local species pool on the kipukas, we also 324 

investigated eight kipukas individually, kipukas that consisted of 18-20 species from the local 325 

community (Supplemental Table 10) Maximum vegetative height data for all species in the 326 

regional and local community were gathered using a combination of herbarium records, species 327 

descriptions, and floras (e.g. Hitchcock & Cronquist 2018). 328 

To assess whether an assembly process has structured the plant community on kipukas, 329 

we used NRI and NTI calculated from both phylogenetic and phenotypic (maximum vegetative 330 

height) information, separately, and CAMI using RF and ABC to perform model selection. We 331 

also performed parameter estimation using ABC to understand what the influence of 𝑡&	or 𝑡8  was 332 

on the assembly processes in either the filtering or competition models, should they be highly 333 

supported. For more details regarding the empirical data analysis, including plant collections and 334 

data simulated for the analysis, refer to the supplemental methods sections 4. 335 

 336 

Results 337 
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4.0 Power Analysis  338 

The average proportion of misclassified simulations using the standard approach of 339 

phylogenetic dispersion metrics for all regional/local community sizes was 56 % (Table 1), 340 

decreasing from 63.3 to 52.9 % with increasing sample size (Fig. 2, Supplemental Table 3). For 341 

each of the community assembly models, the average misclassification rate for each model was 342 

consistent between MPD and MNTD (Table 1) when using phylogenetic information. When 343 

calculating these metrics from phenotypic information, the average misclassification rate varied 344 

depending on whether MPD or MNTD was being used, with MPD having a very low error rate, 345 

4.9 %, and MNTD a high error rate, 48 % (Table 1; Supplemental Table 4). 346 

Average error rates for both of our model selection approaches were substantially lower. 347 

The average random forests OoB error rate when classifying community assembly models was 348 

3.6 %, ranging from 16.7% for small communities to 1.5 % for large communities (Fig. 2). The 349 

average OoB error rates for each community assembly model with RF were 4.8%, 3.0 %, and 2.9 350 

% for neutral, filtering, and competition models, respectively (Table 1). The average ABC model 351 

misclassification rate was 8.47 % (Table 1), ranging from 20.9 % for small communities to 5.9 % 352 

at large communities (Fig. 2). The average ABC error rates for each community assembly model 353 

were 5.4%, 13.6%, and 6.32 % for neutral, filtering, and competition models, respectively (Table 354 

1). 355 

Using RF and ABC to classify models of community assembly and trait evolution 356 

simultaneously resulted in overall higher error rates compared to inferring community assembly 357 

alone (Supplemental Fig. 1). On average, the average OoB error rate for RF was 23.2%, ranging 358 

between 45.7% and 16.2% from small to large communities (Supplemental Table 5), and the 359 
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overall error rate for ABC was 30.7 %, ranging between 50.8 % and 23.5 % from small and large 360 

communities (Supplemental Table 6). 361 

5.0 Parameter Estimation 362 

For all models, the simulations with larger community sizes better estimated the true 363 

value of 𝑡&	and	𝑡8  compared to communities of smaller size (Fig. 3). Regardless of sample size, 364 

	𝑡8  was overestimated when of smaller value. In both filtering and competition models, 𝑡&	and 𝑡8  365 

are slightly underestimated when of larger value – though this is due to the true value of 366 

𝑡&	and	𝑡8	being at the upper bound of the prior distribution, which if extended would not be 367 

apparent. 368 

6.0 Empirical System 369 

Several dispersion metrics used from phylogenetic and phenotypic information identified 370 

significant under-dispersion, or clustering, amongst plant species in the kipukas, suggesting a 371 

community assembly pattern of environmental filtering. When calculating NRI and NTI using 372 

phylogenetic information from all plants in the kipukas, the resulting p-value was 0.02 for MPD 373 

and 0.29 for MNTD. When calculating the same metrics from phenotypes, the resulting p-value 374 

for each test statistic was 0.03 and 0.01, respectively (Supplemental Table 7). For the eight 375 

separate kipuka communities, only MPD using phylogenetic information identified two other 376 

community as significantly under-dispersed (Supplemental Table 7). 377 

We constructed two RF classifiers to make predictions about empirical data. One 378 

classifier was built with simulations from both trait models and the other classifier was built with 379 

data simulated only under an OU trait model. This OU models-only RF classifier was built 380 

because the trait data for the kipuka plants better fit an OU model of trait evolution compared to 381 

a BM model (see supplemental methods 4). The OoB error rates for these two classifiers were 382 
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25.50 and 23.61 %, respectively. We also estimated the error rate when using ABC in the same 383 

way as with RF. For these, the error rate for each cross-validation was 33.20 and 30.40 %. Using 384 

these data and approaches, we predicted the model of community assembly for the empirical data 385 

with RF and ABC, and saw a majority of support for environmental filtering, with the second 386 

highest support for the neutral model (Table 2 OU model-only prediction, Supplemental Table 387 

11 for OU and BM model predictions).  388 

 We performed parameter estimation of 𝑡& for the environmental filtering model for each 389 

dataset under an OU model of trait evolution (Supplemental Table 12). Each time 100 390 

simulations were accepted as from the posterior distribution of 𝑡&	(Fig. 4). We also compared the 391 

amount of model support for the environmental filtering models with the median estimated of 392 

𝑡&	(Supplemental Fig. 2, Supplemental Table 12). 393 

 394 

Discussion 395 

Performance of CAMI 396 

Using CAMI, we can correctly classify models of community assembly and importantly, 397 

quantify the uncertainty associated with community assembly model inference. This approach 398 

improves upon current methods in community phylogenetics by harnessing the critical 399 

information present in the phenotypic and phylogenetic data that directly relate observed patterns 400 

to processes. Our approach is successful, in part, because over and under-dispersion in the 401 

phylogenetic and trait data are emergent properties of the community assembly models 402 

described. Through our method, we can control the processes that directly impact the amount of 403 

over and under-dispersion in the phenotypic data, along with their degree of association with the 404 



 20 

phylogenetic information. Furthermore, our inference pipeline is unique in allowing users to 405 

gauge or rank evidence for both neutral and non-neutral assembly processes. 406 

The performance of RF and ABC are comparable in that they both accurately classify the 407 

community assembly models. A benefit to RF is that all of the summary statistics from the 408 

simulated data can be used without compromising the power or computational speed of the 409 

method. Additionally, RF measures how important each summary statistic is for classifying the 410 

data accurately. While we don’t use this information for any additional community assembly 411 

inferences here, there is potential to ask which summary statistics play an important role in these 412 

assembly processes, and further, whether there are any biological implications to gain from that 413 

information. The main advantage of using ABC is that parameter estimation is straight forward 414 

using simulated data, and this is particularly relevant for estimating the strength of non-neutral 415 

assembly via 𝑡& and 𝑡8 , though parameter estimation using RF is increasingly common. 416 

The predictive approaches outlined here are not meant to replace dispersion metrics, but 417 

rather to be used as an additional tool in making inferences about community assembly. We have 418 

shown here, as others have (Kraft et al. 2007), that dispersion metrics are not reliable in 419 

determining models of community assembly with phylogenetic information alone. When using 420 

phenotypic data, though MPD proved to be comparable in accuracy at distinguishing community 421 

assembly models to RF and ABC; MNTD still had very high error rates (Table 1). 422 

Though CAMI is currently implemented using one trait, the analyses do not necessarily 423 

need to be limited to one trait. If there are several traits of interest in a particular community, 424 

data dimension reduction techniques could be used, such as principle components or linear 425 

discriminate analysis, to associate each species with a singular value representing where they fall 426 

in trait space with respect to other species in the community. Though we do not explore the 427 
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power of inferring models of community assembly from several traits defined in one composite 428 

dimension through simulations, we expect, to some degree, that the method will behave as 429 

presented above in the single-trait case. Using multiple traits in a true multivariate framework, 430 

which we have not implemented, could make for an even more powerful inference, as many 431 

factors influencing community structure could be measured at once (Weiher et al. 1998; Herben 432 

& Goldberg 2014; Kraft et al. 2015). However, if multiple traits are being considered, there also 433 

need be the consideration that there could be multiple phenotypic optima or complex routes of 434 

competition between species, and here we consider the presence of only a single optimum and 435 

equal competition amongst species (Weiher et al. 1998).  436 

While we feel CAMI will continue to make progress in advancing our understand of 437 

community ecological patterns globally, there are still many aspects of community ecological 438 

theory yet to be incorporated (Belyea & Lancaster 1999; Weiher et al. 2011). The assembly 439 

models defined here could be made more powerful by considering other community dynamics 440 

such speciation, colonization, and extinction during the assembly process (Rosindell & Harmon 441 

2013), as well as co-occurring and structured non-neutral processes (Keddy & Shipley 1989) 442 

where the relative importance can be measured (as in Van Der Plas et al. 2015; Munoz et al. 443 

2018). These aspects may be more or less relevant depending on the taxonomic scale of the 444 

community being investigated (Weiher et al. 2011). Furthermore, the performance could also 445 

improve by making it an individual-based model of community assembly (Rosindell et al. 2015; 446 

Pontarp et al. 2019), where individuals can diverge to speciate and harbor intraspecific diversity 447 

amongst phenotypes (Jung et al. 2010, 2014) while tracking abundance distributions and 448 

population demographics (HilleRisLambers et al. 2012; Overcast et al. 2019). A spatially 449 

explicit model (see Pontarp et al. 2019) could also allow for the exploration of how geography, 450 
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or even local topography, impacts the assembly process. Ultimately, we believe this approach 451 

has the capability of being extended to incorporate more complexities known to influence and 452 

emerge from the assembly process. 453 

 454 

Inferring the Strength of the Assembly Process 455 

Parameterizing the strength of the assembly process provides an additional mode of 456 

inference for the relative strength of the non-neutral community assembly processes, 457 

environmental filtering, 𝑡&, and competitive exclusion, 𝑡8 . We have shown that ABC can be an 458 

appropriate tool to estimate both 𝑡& and 𝑡8  accurately (Fig. 3) for their respective community 459 

assembly models. We have also shown that empirical data, from different communities, do 460 

indeed bear some signal to indicate different magnitudes of 𝑡& (Fig. 4). Additionally, we also 461 

show that the estimate of 𝑡& has a relationship with the amount of support the corresponding 462 

non-neutral model receives, in this case, the environmental filtering model. We know that for 463 

filtering models, the smaller the value of 𝑡&, the stronger the effects of filtering, thus the smaller 464 

the estimate of 𝑡& , the greater the model support for environmental filtering (Supplemental Fig. 465 

2). Having this measure that can quantify the influence of the assembly process at play opens the 466 

door for comparisons of communities globally that have been assembled by the same mechanism 467 

(Götzenberger et al. 2012). Prior to now, if multiple communities were inferred to be assembled 468 

via environmental filtering, there was no way to ask whether one environment’s pressure was 469 

stronger relative to the other, while 𝑡&	 and 𝑡8	now permits these questions.  470 

 471 

Models of Trait Evolution 472 
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 Identifying models of community assembly alone was much more successful than when 473 

trying to simultaneously identify models of trait evolution, as shown by the increase in error rates 474 

(Supplemental Fig. 1). When the model of trait evolution is identifiable, as in many BM and OU 475 

cases, simulating under both models is not necessary and drastically decreases the amount of 476 

simulations needed. Information about the best fit trait model, including parameter estimates, can 477 

be used to directly inform parameters used to simulate community assembly data in CAMI (as in 478 

the empirical study). However, we do show that considering both models of trait evolution 479 

simultaneously versus only one at a time does not drastically change the community assembly 480 

inference (Supplemental Table 11). Thus, should one be unable to properly, or with confidence, 481 

estimate the true model of trait evolution, the combined inference procedure in CAMI is 482 

appropriate, and this may be especially useful for early-burst or multi-optima OU models of trait 483 

evolution (Slater & Pennell 2013; Uyeda & Harmon 2014). We should note here that a model of 484 

trait evolution fit to community data, phylogenetic and phenotypic, involves excluding many 485 

taxa from the tree and trait distributions. This means the parameter estimates cannot be tied to 486 

the entire evolution of a particular trait, but rather its evolution amongst a certain set of species.  487 

 488 

Empirical Inference 489 

When using CAMI to distinguish models of community assembly, we reliably see a 490 

majority of support go to the environmental filtering model when considering the entire local 491 

kipuka community, with some support given to the neutral model (Table 2). When looking at the 492 

eight separate kipuka communities, we see that while environmental filtering does still receive a 493 

majority of the support, there is a lot of support garnered for the neutral model as well, and 494 

sometimes even for the competitive exclusion model (Table 2). Conveniently though, when 495 
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comparing the model probability estimates with the 𝑡& estimates, we get a better understanding 496 

of why the model support is where it is for a particular kipuka and that the 𝑡& parameter is being 497 

estimated appropriately (Supplemental Figure 2). 498 

 When using dispersion metrics to distinguish models of community assembly, the 499 

reliability is less apparent. Many of the observed dispersion metrics fall at the lower ends of the 500 

random distribution of dispersion indices, and subsequently result in low p-values. However, one 501 

of the caveats of hypothesis testing is that there is a sort of arbitrary cutoff between when 502 

something is significant and when it is not. In this case, technically the cutoff is 0.025 and so 503 

only four out of 36 metrics were significant. These issues are generally overcome with intuition 504 

because it is obvious some of the p-values are still very low, but they do highlight problems with 505 

hypothesis testing and relying on p-values for marks of biological significance.  506 

For each kipuka species pool, the strength of the filtering process was estimated quite 507 

differently. For the entire species pool of the kipukas, the 𝑡& estimate was a relatively moderate 508 

value, 15.4, given the prior range of 1 to 60, where values near 1 imply strong filtering, and 509 

values closer to 60 imply weak filtering. For other kipuka communities though, 𝑡& was often a 510 

moderate estimate, falling somewhere in the middle of the prior distribution, though sometimes 511 

the estimate was very low (Fig. 4D-E) and other times, quite high (Fig. 4I). We recognize though 512 

that any interpretation of 𝑡& is challenging because the parameter has never before been 513 

measured using any community or trait before. Thus, we expect with continued investigations of 514 

community data using CAMI will decipher a sharper picture on how 𝑡& behaves across many 515 

natural communities. We feel these estimates are a good start to that investigation given their 516 

correspondence with the model probabilities (Supplemental Fig. 2). We should note that in the 517 

case of these 𝑡& estimates, the rate of character change is so low that a strong effect of filtering 518 
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with that little phenotypic variation may be harder to detect than if more variation were present. 519 

Similarly, the estimates of 𝑡& are be less reliable when the community size is small (Fig. 3), 520 

which is true in the case of these kipukas. 521 

 One anecdotal explanation for the support for the environmental filtering assembly 522 

model lies in the structure of the kipukas. Lava flow builds up on the edges of the habitable land 523 

forming a sort of “bowl,” with the plant community inside the bowl. Species that generally grow 524 

taller than the bowl edges are less protected from heavy wind speeds common in the area and 525 

may be more likely to be filtered from the environment. Likewise, with high wind speed comes a 526 

likely increase in dispersal ability for some species in the regional pool, which may explain the 527 

support of the neutral model. However, even though we can speculate on the cause for the 528 

support of an environmental filtering model acting on height in the kipukas, we still lack 529 

evidence of the true cause of the support. 530 

While vegetative height has been hypothesized to play an important role in community 531 

structure, as a functional phenotype and a proxy for other important traits (Cornwell et al. 2014), 532 

because we only take into account a single functional trait, we recognize the potential limitations 533 

to these inferences. The CAMI framework does permit the testing of multiple traits 534 

independently and using the evidence of how each trait influenced community assembly to better 535 

understand the historical and contemporary assembly processes (Herben & Goldberg 2014). 536 

Additionally, each trait, if influencing community assembly in a non-neutral way, will be 537 

associated with an estimate of 𝑡& or 𝑡8 , which will also provide insight into the degree that each 538 

trait influences the assembly process for a particular community. 539 

 540 

Conclusion 541 
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 CAMI is a new approach able to estimate the probability of neutral and non-neutral 542 

community assembly models given observed phylogenetic and phenotypic information. By 543 

harnessing the power of simulations and approximate approaches for model selection, such as RF 544 

and ABC, we can quantify uncertainty in community assembly inferences. Additionally, new 545 

parameters described here, 𝑡& and 𝑡8 , govern the strength of environmental filtering and 546 

competition, respectively, and are estimable with data. Defining the non-neutral assembly 547 

models and parametrizing the processes to mimic strong to mild assembly dynamics will add to 548 

what we know about assembly processes globally and communities that have been assembled via 549 

the same mechanisms. While there are other approaches that infer community assembly in a 550 

model-based framework (Van Der Plas et al. 2015; Munoz et al. 2018; Pontarp et al. 2019), 551 

CAMI also offers a unique opportunity to use information that is readily available in 552 

phylogenetic community ecology. Given these data are common for community assembly 553 

studies, this framework could be readily applied to many existing systems and provide more 554 

information about the differences in community ecology globally.  555 
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Fig. 1. Outline of data simulation process. (1.1) Simulate the regional phylogeny using 751 

associated parameters. (1.2) Simulate trait evolution along the regional phylogeny under 752 

associated parameters. (1.3) Simulate the assembly of the local community by sampling species 753 

at random from the regional species pool and calculating the probability of persistence for each 754 

sampled species. These probabilities are calculated differently depending on the model of 755 

assembly being simulated, and if a species’ probability of persistence is greater than a randomly 756 

generated probability, then that species survives in the local community. 757 

 Fig. 2. Error rates, or proportion of incorrectly classified simulations, when classifying 758 

community assembly models compared to the size of the local community used. Four model 759 

identification approaches are summarized here. The first is the average error rate when using 760 

dispersion metrics (MPD and MNTD) from phylogenetic information (dotted). The second is the 761 

average error rate when using dispersion metrics from functional trait information (big dashed). 762 

The final two are model selection approaches employed in CAMI, ABC (gray), and RF (small 763 

dashed). 764 

Fig. 3. Estimation of 𝑡& and 𝑡8  under their respective non-neutral models of community 765 

assembly, coupled with one of two models of trait evolution. In each graph, the individual 766 

boxplots represent the median values of either 𝑡&	or	𝑡8	 from 100 independent attempts at 767 

parameter estimation, thus they are not posterior distributions, but rather a distribution of median 768 

parameter estimates. The light gray boxes represent datasets with regional/local community sizes 769 

of 200/100 and the dark gray boxes represent regional/local community sizes of 800/400. The 770 

dotted line in each plot represents a 1:1 correlation between estimated and true values of 771 

either	𝑡&	or	𝑡8 . A. Environmental filtering community assembly with a BM model of trait 772 

evolution. B. Competitive exclusion community assembly with a BM model of trait evolution. C. 773 
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Environmental filtering community assembly with an OU model of trait evolution. D. 774 

Competitive exclusion community assembly with an OU model of trait evolution. 775 

Fig. 4. left) Regional phylogeny of species in the Craters of the Moon National Monument and 776 

Preserve, coupled with each species’ maximum vegetative height in meters represented by the 777 

filled bar plots by each species. Species only present in the regional community have their trait 778 

bars colored white, while species that are also present in the local community have their trait bars 779 

colored black. The bars are truncated at 6 meters, as only the four trees in this study are larger 780 

than 6 meters, and those species and their heights are available in supplemental table 8. right) 781 

Nine panels displaying the prior (light gray) and posterior (dark gray) probability distributions of 782 

𝑡&	under an environmental filtering model and OU model trait evolution. The dotted line 783 

represents the median estimate of 𝑡&. A) Estimate from the entire local kipuka plant species pool. 784 

B-I) Estimates from the separate eight kipuka communities. 785 

  786 
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Fig. 1 787 
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Fig. 2  788 
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Fig. 4  791 
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Table 1. Average error rates for model classification approaches in classifying each of the three 792 

community assembly models, as well as overall classification error.  793 

 794 
  795 

    Neutral Filtering Competition Mean 

Phylogenetic 
MPD 4.810 72.590 90.845 56.082 

MNTD 4.930 66.000 99.390 56.773 

Phenotypic 
MPD 4.741 7.940 2.130 4.937 

MNTD 4.911 39.855 99.465 48.077 

RF 4.845 3.013 2.855 3.571 

ABC 5.440 13.640 6.320 8.467 



 43 

Table 2. Community assembly model predictions from RF and model posterior probabilities 796 

from ABC for all local kipuka plant species and eight individual kipuka communities. All 797 

predictions were made with simulations using an OU model of trait evolution. 798 

 799 

RF ABC 
  Competition Filtering Neutral Competition Filtering Neutral 

ALL - 0.64 0.36 - 0.82 0.18 
B 0.06 0.54 0.40 - 0.35 0.65 
C 0.06 0.60 0.34 - 0.50 0.50 
D 0.07 0.61 0.32 - 0.92 0.08 
E 0.06 0.58 0.36 - 0.67 0.33 
F 0.02 0.46 0.52 - 0.47 0.53 
G 0.05 0.52 0.43 - 0.60 0.40 
H 0.04 0.52 0.44 0.02 0.47 0.52 
I 0.08 0.48 0.45 0.32 0.25 0.43 


