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Abstract 

Understanding population divergence involves testing diversification scenarios and 

estimating historical parameters, such as divergence time, population size and migration rate. 

There is, however, an immense space of possible highly parameterized scenarios that are 

difficult or impossible to solve analytically. To overcome this problem researchers have used 

alternative simulation-based approaches, such as approximate Bayesian computation (ABC) 

and supervised machine learning (SML), to approximate posterior probabilities of hypotheses.   In 

this study   we demonstrate the utility of our newly developed R-package to simulate summary 

statistics to perform ABC and SML inferences. We compare the power of both ABC and SML 

methods and the influence of the number of loci in the accuracy of inferences; and we show 

three empirical examples: (i) the Muller’s termite frog genomic data from Southamerica; (ii) the 

cottonmouth and (iii) and the copperhead snakes sanger data from Northamerica. We found that 

SML is more efficient than ABC. It is generally more accurate and needs fewer simulations to 
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perform an inference. We found support for a divergence model without migration, with a recent 

bottleneck for one of the populations of the southamerican frog. For the cottonmouth we found 

support for divergence with migration and recent expansion and for the copperhead we found 

support for a model of divergence with migration and recent bottleneck. Interestingly, by using 

an SML method it was possible to achieve high accuracy in model selection even when several 

models were compared in a single inference. We also found a higher accuracy when inferring 

parameters with SML. 

 

Keywords:  phylogeography,  Dermatonotus ,  Agkistrodon,  UCE, coalescent model 

 

Introduction 

The process of population divergence and speciation is finally being realized across 

many non-model organisms with the use of genetic data and advanced statistical models. 

Understanding population divergence involves testing diversification scenarios and estimating 

historical parameters, such as divergence time, historical demography and migration rate 

(Nielsen & Beaumont, 2009)  . Under simple diversification scenarios it is possible to use the 

coalescent model  (Kingman, 1982)  with the likelihood function and MCMC to infer model 

probabilities and associated historical parameters  (Beerli & Palczewski, 2010; Bouckaert et al., 

2014; Gronau, Hubisz, Gulko, Danko, & Siepel, 2011; Hey, 2010; Yang & Rannala, 2010) . There 

is, however, an immense space of possible diversification scenarios where several hypotheses 

may translate into complex, highly parameterized models that are difficult or impossible to solve 

analytically  (Fagundes et al., 2007; Mayr, 1942)  .  

To overcome these limitations, researchers have used alternative approaches to 

approximate posterior probabilities or marginal likelihoods of population parameters by reducing 
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data to summary statistics  (Beichman, Huerta-Sanchez, & Lohmueller, 2018)  .   These summary 

statistics can be used in approximate Bayesian computation (ABC) and Supervised Machine 

Learning (SML) to test hypotheses in a flexible likelihood-free context. ABC uses simulations 

generated from parameter values sampled from prior probabilities to infer posterior probabilities 

by applying a rejection algorithm that discards all simulations where the distance to the 

observed data falls above an arbitrary tolerance level  (Beaumont, 2011; Csilléry, Blum, 

Gaggiotti, & François, 2010) .  Alternatively, simulated summary statistics can be used in SML as 

training data  (Schrider & Kern, 2018)  . For the simulated data, the link between population 

parameters and summary statistics is known, so the algorithm can learn this connection and 

infer model probability and parameter values for observed summary statistics  (Burbrink & 

Gehara, 2018; Sheehan & Song, 2016) .  To perform ABC and SML, end-users need to create 

custom scripts to sample parameters from prior distributions and pass them to a simulator. This 

requires integration of many different packages in various languages and the user’s ability to 

control this workflow sets the limit on the testable diversity of scenarios and hypotheses. 

ABC and SML algorithms were already implemented in different packages of the R 

statistical platform  (Csilléry, François, & Blum, 2012; Kuhn, 2008) .  However, there is currently no 

R-package to generate simulations for simulation-based model inference. To fill that gap we 

developed a new R-package, called  PipeMaster,  that can be used to build models, add prior 

distribution to model parameters, and simulate coalescent data from these prior distributions. 

PipeMaster  can also calculate summary statistics for the empirical data to allow statistical 

comparison between observed and simulated data. 

Here we demonstrate the utility of our newly developed package for three empirical 

examples and evaluate the power of ABC versus SML and the influence of the number of loci in 

the accuracy of model inferences. In the first example, we tested 10 hypotheses of divergence 
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for the Muller’s termite frog , Dermatonotus muelleri,  using newly generated data of 2177 loci of 

ultra-conserved elements (UCE). In the second and third examples, we tested six different 

hypotheses for two species complexes of North American vipers, the cottonmouth and the 

copperhead, using pre-existent multi-locus data  (Burbrink & Guiher, 2015) . We show that 

PipeMaster  can be used with other R-packages to perform model and parameter inference in a 

single platform and to test complex diversification hypotheses to better understand the evolution 

of organisms. 

 

Material and Methods 

The PipeMaster R-package is currently available on github 

( www.github.com/gehara/PipeMaster ) and can be installed via the  install_github  function from 

the devtools R-package. Below we describe the main features of the package and exemplify its 

use for model and parameter inference using empirical data with Nexgen and Sanger 

dimensions. 

 

The interactive menu 

PipeMaster  has an interactive menu that allows the user to build models and set up 

parameter priors. In addition, the  main.menu  function can take a  ms  simulator string  (see 

Hudson, 2002 for more information about ms)  for model specification, which can be generated 

interactively with the PopPlanner application  (see Ewing, Reiff, & Jensen, 2015 for more 

information about this application)  . Alternatively, the user can input a tree topology in newick 

format as a backbone of a diversification model, thus generating a simple isolation model with 

constant population size and divergence time parameters. This basic isolation model can be 

modified by adding ancestral population size changes and migration parameters, or by removing 
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divergence parameters to simulate island models. The user can use the interactive menu to set 

conditions for parameter sampling (e.g. Ne1 > Ne2: effective population size of population 1 is 

larger than effective population size of population 2). In the current version, uniform and normal 

prior distributions are allowed. When the user exits the menu, the model can be saved as an R 

object. A previously generated model object can be used as a template for a different model 

setup, eliminating the need to start from the beginning when generating a nested model. 

Specific characteristics of the data regarding number of base pairs and samples per population 

per gene can be obtained using the  get.data.structure  function. This function reads the 

parameters of the observed data and replicates them in the model. 

 
The simulation functions work-flow 

PipeMaster  uses  ms   (Hudson, 2002)  as an internal R function,    or  ms ABC  (Pavlidis & 

Laurent, n.d.)   as the essential source of simulation .  The program  ms  simulates coalescent trees 

under the Wright-Fisher model, and places segregating sites on these trees under the infinite 

site model.  

PipeMaster  has three simulation functions for non-hierarchical models: i) 

sim.ms.sumstat , used to simulate   summary statistics optimized for Sanger-scale data;   ii) 

sim.coaltrees , to simulate coalescent trees; and iii)  sim.msABC.sumstat , to simulate summary 

statistics using the simulator  ms ABC  (Pavlidis, Laurent, & Stephan, 2010)  as an external 

program ( Figure 1a-c ).   All functions take as input the model object generated by the  main.menu 

function. They have the same basic work-flow and are used to sample parameter values from 

prior distributions, convert the values to coalescent scale, pass those values to a coalescent 

simulator, and write the output in a text file. In the case of  sim.ms.sumstat,  the simulated data is 

passed to PopGenome R-package  (Pfeifer, Wittelsburger, Ramos-Onsins, & Lercher, 2014)  for 
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summary statistics calculation and the entire simulation process is performed without calling any 

external program. 

 

ABC and SML analyses 

We implemented two different simulation-based inference methods in this study, 

approximate Bayesian computation (ABC) and supervised machine-learning (SML). In all 

empirical examples, before proceeding with the inference, we evaluated model-fit by running a 

PCA of simulated and observed data. For the ABC approach we used the  abc  R-package 

(Csilléry et al., 2012) . We performed an abc rejection using the  postpr  function to calculate 

model probabilities by retaining 100 simulations with the closest distance from our observed 

data. To calculate accuracy in model selection we used  cv4postpr  with 100 pseudoreplicates per 

model and the same tolerance value. The final accuracy was calculated by dividing the total 

number of correct classifications by the total number of pseudoreplicates. 

For SML we used the simulated data to train a neural network with one hidden layer to 

classify the data into different simulated scenarios using the  nnet  algorithm in  caret  R-package. 

We preprocessed the summary statistics by centering and scaling the data. We used 75% of the 

simulations as training data and the remaining 25% as testing data. To tune the parameters of 

the neural network, such as number of nodes and decay value, we performed 10 bootstraps 

with a maximum of 2,000 iterations in each learning replicate and retained the parameters 

yielding the highest accuracy. After training and testing,  we used the neural network to classify 

our observed summary stats. 

To estimate parameters we used the  abc  function of the abc R-package with the 

neuralnet  regression method. Before proceeding with the estimation we simulated additional 

data for the best selected model totalizing 1,000,000 data sets for the Sanger examples and 
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100,000 for the UCE example. The  abc  function first performs a rejection step, reducing the 

dataset before neural network training. We evaluated tolerance and the accuracy of parameter 

estimates using the  cv4abc  function with 100 replicates and two different tolerance values  for 

the Sanger examples (0.01, 0.001) and three values for the UCE example(0.1, 0.01, 0.001) . We 

then calculated the correlation ( r ) between true and estimated parameters for each tolerance 

value. We selected the tolerance yielding the best correlations among parameters. All codes 

used in the ABC and SML are available on github as part of a tutorial for the package 

(github.com/gehara/PipeMaster). 

 

SML versus ABC and the influence of the number of loci in the accuracy of estimates 

To evaluate the influence of the number of loci and compare the performance of ABC 

versus SML for estimating the true model, we ran a set of simulations experiments with four 

treatments that varied in total number of loci (10, 100, 1000, 2177). We used the case study of 

Dermatonotus muelleri  below as an empirical basis for this experiment. Accordingly, simulation 

parameters, models, priors and summary statistics were the same as simulated for  D. muelleri, 

while the different number of loci with   their parameters (base pairs number of individuals per 

population) were obtained by sub-sampling 10, 100, or 1000 loci from the total dataset of 2177 

loci generated for  D. muelleri,  plus a fourth treatment that contained the entire dataset. In each 

treatment we ran ABC and SML inferences for a group of pseudo-observed data (POD; i.e. test 

data in machine-learning jargon). We repeated these calculations three times, varying the total 

number of simulations per model (1,000, 10,000 and 100,000). 

We also performed a simulation experiment based on the  D. muelleri  data to evaluate 

the accuracy of parameter estimates under different number of loci. In this case we estimated 

parameters for 100 POD under the IsBott2 model, which was the model with the highest 
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probability for  D. muelleri  (see details below). We simulated a total of 100,000 data sets to use 

as reference data. To estimate parameters we used the  abc  function of the abc R-package with 

the neural network regression. We retained 1000 simulations after the rejection step and used 

these to train a neural network. We then calculated the correlation ( r ) between true value and 

estimated value for each parameter. An  r  closer to 1 would indicate a lower error in parameter 

estimates. We performed this calculation for the same treatments of 10, 100, 1000 and 2177 loci 

and we tested different retention or tolerance values. 

 

Application with UCE data - testing diversification hypotheses for muller's termite frog 

As an empirical example we generated a dataset of 2177 loci of ultra-conserved 

elements (UCE) for the neotropical frog,  Dermatonotus muelleri  (see details of molecular 

protocol in the Supplementary methods) .  This species is distributed along the dry diagonal of 

open formations which separates the Amazon from the Atlantic Forest. It is an explosive 

breeder, highly adapted to seasonal environments with pronounced periods of drought  (Nomura, 

Rossa-Feres, & Langeani, 2009) . A previous study using three loci  (Oliveira et al., 2018)   found 

that  D. muelleri  is composed by two deeply divergent populations, one distributed in the 

Caatinga and north of Cerrado, and a second one distributed in the southwest part of Cerrado 

( Figure 2a ). Here we took a subsample of 88 individuals used in that study. After data assembly 

population assignment tests (see Supplementary methods) confirmed the existence of  two 

spatially structured clusters  (Oliveira et al., 2018)  . 

The geographic break separating these two populations falls in an area of high elevation, 

which may have isolated the populations. Also, Pleistocene climatic cycles are expected to have 

influenced the demographic history of at least the Northeast population  (Gehara et al., 2017; 

Oliveira et al., 2018) . Oliveira et al. (2018) found support for a model of diversification without 
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migration and expansion only for the Northeastern population. To challenge these findings and 

test alternative diversification hypotheses for  D. muelleri,  we tested 10 two-population models: 

(i) a pure isolation scenario without migration and without demographic change (Is); (ii) an 

isolation with migration scenario without demographic change (IM); (iii) an isolation with recent 

expansion and no migration (IsExp); (iv) an isolation with migration and recent expansion 

(IMExp); (v) isolation with recent bottleneck and expansion (IsBott); (vi) isolation with migration, 

recent bottleneck and expansion (IMBott); (vii) isolation with recent expansion only for the 

Northeastern population (IsExp2); (viii) isolation with migration with expansion only for the 

Northeastern population   (IMExp2); (ix)   an isolation with bottleneck only for the Northeastern 

population (IsBott2); (x) an isolation with migration scenario with a bottleneck only for the 

Northeastern population (IMBott2) ( Figure 3 ). Priors of population sizes and time of 

demographic events were retrieved from Oliveira et al. (2018) and can be found in the 

Supplementary Table 1 . 

We simulated 100,000 data sets of 38 summary statistics (see  Supplementary 

Methods  and tutorial: github.com/gehara/PipeMaster) per model with  sim.msABC.sumstat 

function. We used two independent approaches for model inference, ABC and SML described 

above. 

 

Application with Sanger data - testing diversification hypotheses for Copperhead and 

Cottonmouth pit vipers 

We also performed a model selection for two species complexes of vipers widely 

distributed in Eastern North America: the  Agkistrodon contortrix  complex (Copperheads), and 

the  Agkistrodon piscivorus  complex (Cottonmouths). The dataset used contain one 

mitochondrial and five nuclear loci.  

9 
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The  A. contortrix  species complex comprises two species,  A. contortrix  and  A. 

laticinctus,  which together cover a large portion of eastern and central United States . 

Agkistrodon contortrix  is associated with deciduous hardwoods and pine forests and has a wider 

distribution in the Eastern and Midwestern US ( Figure 2b ).  Agkistrodon laticinctus   occurs in 

drier grassland environments in the central US to the Trans-Pecos habitats of west Texas. 

Diversification in this complex is likely ecological, since their contact zone falls in the transition 

from forested habitats to grasslands  (Burbrink & Guiher, 2015) . Both species currently occur in 

areas that were covered by ice sheet during the last glaciation and show genetic signs of 

population expansion in the Pleistocene  (Guiher & Burbrink, 2008)  . 

The  A.   piscivorus  is also composed of two species. One of them,  A. conanti,  is mainly 

restricted to the Florida Peninsula. The other,  A. piscivorus,  is distributed north of the peninsula 

up to southern Illinois and Indiana in the north, Eastern Texas in the west, and coastal North 

Carolina in the east ( Figure 2c ). The contact zone of these two species in the Florida peninsula 

represents a common phylogeographic break for several other organisms  (Burbrink, Fontanella, 

Alexander Pyron, Guiher, & Jimenez, 2008; Krysko, Nuñez, Lippi, Smith, & Granatosky, 2016; 

Mckelvy & Burbrink, 2017; Soltis, Morris, McLachlan, Manos, & Soltis, 2006)   and the 

diversification of the complex was also likely influenced by the climatic cycles of the Quaternary 

(Guiher & Burbrink, 2008)  . 

Taking these aspects into account, we tested for both species complexes, six 

diversification hypotheses ( Figure 3 ).  We generated the six models (a subset of the models 

simulated for the frog example above; see  Figure 3 ) and simulated 100,000 datasets for each 

model using the  sim.ms.sumstat  function of PipeMaster R-package. We used wide uniform prior 

distributions according to Burbrink and Guiher (2015) (see parameter list and priors in the 
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supplementary material). We used a set of 17 summary statistics (see  Supplementary 

Methods  and tutorial: github.com/gehara/PipeMaster) 

For both species complexes and both methods used (ABC and SML) we compared the 

models hierarchically. (i) first we compared all the Isolation models with each corresponding 

version that included migration (e.g. IsD against IMD; IsBott against IMBott). (ii) Than we took 

the best models resulting from the first comparisons and conducted a second comparison to find 

the best model of all. 

  

Results 

SML versus ABC 

The simulation experiment shows a higher error in model selection when using ABC 

relative to SML ( Figures 4 and 5 ). The number of loci has a strong influence in the accuracy of 

model inferences. The dataset with 2177 loci had highest accuracy while the 10 locus dataset 

had the lowest. The number of simulations also influence accuracy with inferences performed 

with a reference dataset of 1,000 simulations per model having the lower true model 

probabilities ( Figure 4 ), while the inferences performed with 100,000 simulations per model has 

the highest, particularly for ABC. For the SML inference both reference datasets of 10,000 and 

100,000 simulations per model yielded nearly identical accuracies. The number of loci also has 

influence in parameter estimates. SML had higher precision when compared to ABC ( Figure 5 ). 

The number of retained simulations, the tolerance value, influences ABC and SML in different 

ways. For ABC retaining a low number of simulations yielded higher  R . For SML retaining more 

simulations result in better algorithm training. 

 

Diversification of muller's termite frog 
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Simulations presented a good fit to the data as shown by the PCA plots 

( Supplementary Figure 1 ). The trained neural network is able to differentiate and classify the 

10 models with an accuracy of 0.879 while the ABC had an accuracy of 0.83. Using the SML 

approach the observed data was classified as the IsBott2 model with a probability higher than 

0.99 ( Table 1 ), where only the northeast population experienced a bottleneck with expansion. 

The ABC inference suggest a different model, IMexp, where the two populations expand after 

divergence. In this case, the probability of the model was considerably lower, 0.49. Because the 

accuracy of the SML is higher, we consider the IsBott2 as the best model. 

The divergence time can be estimated with high accuracy and suggest a split around 2.6 

Ma between the two populations ( Table 2 ). Estimated current sizes for population 1 suggest a 

very large population after expansion but accuracy of this estimate is low .  Estimates for 

population 2 are more accurate ( Table 2 ).   The average estimated mutation rate was 

2.2E-10/site/generation with an estimated standard deviation of 3.88E-10/site/generation . 

 
Diversification of Copperhead and Cottonmouth pit vipers 

For both species complexes, the simulated models had a good fit to the data, as 

suggested by the  PCA ( Supplementary Figure 2 ). In the first comparisons (1, 2 and 3; see 

Table 3 ) for the  A. contortrix  complex, the accuracy varied from 0.79 – 0.85 for the SML  and 

from 0.76 – 0.86 for the ABC. For comparison 1 (Is vs IM), ABC and SML showed conflicting 

results, with the pure isolation model, Is, having the highest probability for the ABC and the 

isolation with migration model, IM, having the highest probability in the SML. For comparisons 2 

and 3, the two methods showed concordant results; models that included migration had higher 

probabilities than the correspondent models without migration ( Table 3 ). The final comparison 

accuracies of ABC and SML were 0.78 and 0.79 respectively. Both methods converged in the 

same best model for the diversification of  A. contortrix  complex, IMBott ( Table 3 ). For all 
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comparisons, the SML showed higher probabilities for the selected model when compared to 

ABC ( Table 3 ). 

In the first comparisons (1, 2 and 3; see  Table 3 ) for the  A. piscivorus  complex, the 

accuracy varied from 0.92 – 0.94 for the SML and from 0.89 – 0.93 for the ABC,  and the best 

selected model were the same as the ones inferred for the  A. contortrix  complex ( Table 3 ). In 

the final comparison, the accuracy of the ABC was higher than the SML, 0.87 and 0.79 

respectively. However, both methods suggest high probabilities for the same model, the IMexp, 

which is an isolation with migration with expansion for both species ( Table 3 ). 

The cross-validation for the parameter estimates suggest low correlation between 

estimated and true values, particularly for  A. contortrix  ( Table 4 ), suggesting high uncertainty in 

estimates. In general, the parameters that can be estimated with higher confidence are the 

current population sizes ( Table 4 ) .  

 
Discussion 

Our simulation experiment showed that supervised machine-learning outperforms 

approximate Bayesian computation. This is particularly evident for datasets with genomic 

dimentions, which is the current standard of molecular studies for non-model organisms. We 

also show that much higher accuracies can be obtained with a SML as opposed to ABC, even 

when using just 100 loci and a considerably low number of simulations per model (10,000). 

Thus, because ABC requires a larger amount of simulations, it is more time consuming and less 

efficient when compared to SML. 

Our simulation experiment also show that the model parameters can be estimated with 

higher accuracy with the increase in the number of loci. The SML approach also outperforms 

ABC for parameter estimates ( Figure 4 ). Some parameters, like current effective population 
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size and time of divergence, can be estimated with higher accuracy. However, ancestral 

population sizes are harder to estimate ( Figure 5 ;  Table 2 ). Interestingly, posterior distributions 

of the average and standard deviation of the mutation rate across all loci can be obtained with 

high confidence, allowing a more relaxed assumption when compared to using a fixed mutation 

rate for all loci. 

 

Diversification of muller's termite frog 

We found support for an isolation model with population contraction with expansion for 

the northeast population. This partially agrees with Oliveira et al.  (2018) , who found support for 

recent expansion without a contraction. Oliveira et al.  (2018)  analyzed only three loci while we 

analyzed more than 2,000, thus our data certainly contains more information about historical 

demography   (e.g. Gill et al., 2013) . 

The inference of a population contraction in the northeast population reinforces the idea 

of dynamic landscape changes in the northeast of Brazil along the Pleistocene. Currently, this 

area is predominantly covered by the Caatinga semiarid environment, but many studies suggest 

periods of increase in humidity in the last 1 Ma  (Auler et al., 2004b; Cheng et al., 2013)  . 

Travertine deposits suggest a long period of increase in humidity from approximately 460 to 330 

K years  (Auler et al., 2004a)   which remarkably agrees with our estimated time for the reduction 

in population size (mode: 337 Ky, CI: 195 – 437 Ky). These humid phases in the northeast of 

Brazil may have allowed long distance dispersals between Amazon and Atlantic forest fauna 

(Dal Vechio, Prates, Grazziotin, Zaher, & Rodrigues, 2018; Prates, Rivera, Rodrigues, & 

Carnaval, 2016) . The reduction in population size is followed by a population expansion starting 

at around 230 K years (CI: 132 – 362 K years), in agreement of other studies that find 

synchronous population expansion Caatinga’s herpetofauna  (Gehara et al., 2017)  . 
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The estimated divergence time at 2.6 Ma is considerably younger than previous 

estimates  (~4 Ma; see Oliveira et al., 2018) . Our estimates places the divergence between the 

northeast and southwest populations in the Pliocene-Pleistocene transition, after the mid 

Pliocene warm period, when the average global temperature was 2 – 3 o  C higher than today. 

This higher temperature may have allowed  D. muelleri,  a lowland species ,  to inhabit the 

highlands of the Brazilian plateau. With the temperature cooling the highland climate may have 

become unsuitable for the species and the Brazilian plateau became a vicariant barrier causing 

diversification.  

 

Diversification of Copperhead and Cottonmouth pit vipers 

For both species complexes, we found support for demographic change and gene flow 

between species pairs. For the  A. contortrix  complex, we found support for a reduction in 

population size with subsequent expansion in the late Pleistocene. This species complex is 

currently found in areas that were covered by ice sheets during glaciations. Accordingly, the 

glaciation cycles would have restricted the distribution of the species to southern refugia, 

causing a population contraction  (Burbrink et al., 2016; Marshall, James, & Clarke, 2002)  . In 

interglacial periods, the species would expand their range and their population sizes. It is also 

possible that the climatic cycles influenced their divergence, driving speciation by the isolation of 

populations in distinct refugia. Nevertheless, the presence of gene flow indicates that if isolation 

happened during glaciations, they were likely followed by periods of contact. Gene flow may 

also indicate the role of climatic gradients in diversification.  Agkistrodon contortrix  and  A. 

latiscinctus  occur in distinctly different niches  (Burbrink & Guiher, 2015; Gloyd & Conant, 1990) 

and they likely present physiological adaptations to these different environments. Thus, hybrids 

may have lower fitness when compared to non-hybrids  (Gow, Peichel, & Taylor, 2007)  . Future 
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studies using thousands of loci will have the opportunity to test for selection across the climatic 

gradients, and may shed more light on the evolution of the  A. contortrix  species complex. 

For the  A. piscivorus  complex, we found no support for a bottleneck during the 

Pleistocene. The most probable model suggests an isolation with gene flow and a recent 

population expansion. Both  A. piscivorus  and  A. conanti  are mostly distributed in areas free from 

broadscale effects of Pleistocene glaciation  (Marshall et al., 2002) . Accordingly, the supported 

model suggests a relatively more stable population size, with recent population expansion for 

both species. The contact zone between the species   is in the northern area of the Florida 

Peninsula. This region was isolated from the continent when sea levels were higher, so it is 

likely that the diversification of the complex was influenced by sea level rise, which could have 

isolated  A. conanti  in a continental island formed by part of the landmass that today represents 

the Florida Peninsula  (Hine, 2013; Krysko et al., 2016)  . In this scenario, gene flow between  A. 

conanti  and  A. piscivorus  was favored during glacial periods when sea levels were low, while 

isolation happened during interglacial periods while sea levels were high. 

 

Conclusion 

We demonstrated the use of coalescent simulations generated by our newly developed 

R-package to infer the probability of complex diversification models in three different non-model 

organisms. In the three cases, we were able to test relatively complex demographic models with 

population size change, population structure and migration that are difficult, time consuming or 

impossible to implement using a full Bayesian or likelihood approaches. Interestingly, by using a 

SML method it was possible to achieve high accuracy in model selection even when several 

models were compared in a single inference ( Table 1 ). 
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Machine-learning algorithms are becoming increasingly available to the general scientific 

community through R and Python applications, facilitating its use for an unprecedented number 

of cases in evolutionary biology and ecology. Here we demonstrated its use comparing it with a 

more traditional, ABC, for model inference in population genetics. Our results agree with the 

recent literature  (Schrider & Kern, 2018; Sheehan & Song, 2016)   supporting the power of SML 

in dealing with complex multi-dimensional problems such as the ones presented here. 
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Tables 
 
Table 1:  Model probabilities and accuracies calculated with ABC and SML for the comparison of 
10 simulated models for the frog  Dermatonotus muelleri  2177 UCE data. (see  Figure 3  for a 
schematic representation of the models). 

Model 

Probability 

SML ABC 

IM 0 0 

IMBott 0 0.17 

IMBott2 0 0 

IMExp 0 0.49 

IMExp2 0 0 

Is 0 0 

IsBott 0.0037 0.17 

IsBott2 0.9963 0.13 

IsExp 0 0 

IsExp2 0 0.04 

Accuracy 0.8798 0.826 

 

Table 2:  Parameter priors, posterior estimates and correlation ( r ) result calculated with the 
cross-validation experiment for the frog species (UCE data). See  Supplementary Table 1  for a 
complete list of priors and parameters. 

Paramater Prior (min – max) 2.50% Median Mean Mode 97.50% r 

Ne0.pop1 100,000 – 5,000,000 2,450,945 3,756,958 3,845,324 3,543,630 5,538,957 0.58 

Ne0.pop2 100,000 – 5,000,000 -347,089 1,012,398 1,007,289 993,517 2,270,467 0.82 

Ne1.pop1 1,000 – 50,000 5,275 24,930 24,360 31,128 39,783 0.55 

Ne2.pop1 50,000 – 5,000,000 1,784,442 3,633,865 3,728,091 3,342,328 5,908,761 0.2 

Ne1.pop2 50,000 – 5,000,000 -727,952 123,083 133,108 132,045 1,166,070 0.82 

join1 500,000 – 8,000,000 1,139,788 2,615,899 2,600,426 2,620,037 4,173,138 0.84 

t.Ne1.pop1 20,000 – 500,000 132,078 238,909 241,542 233,411 362,085 0.64 

t.Ne2.pop1 20,000 – 500,000 195,084 324,834 321,999 336,868 427,928 0.51 

t.Ne1.pop2 500,000 – 8,000,000 1,002,084 2,470,257 2,453,955 2,464,068 3,996,727 0.84 

mean.rate 1E-11 – 1E-9 6.50E-11 2.28E-10 2.38E-10 2.27E-10 5.04E-10 0.77 

sd.rate 1E-11 – 1E-9 2.71E-10 3.99E-10 4.12E-10 3.88E-10 6.50E-10 0.79 
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Table 3: Model probabilities estimated with ABC and SML with respective accuracies of estimates for               
the two snake species complex. Models were compared hierarchically, first comparisons 1, 2 and 3 were                
carried out independently. The final comparison included the best models of comparison 1, 2 and 3. Bold                 
probabilities indicate the selected model for each comparison (see Figure 3 for a schematic              
representation of the models). 

 Agkistrodon piscivorus 

 1 2 3 Final 

 Is vs IM (Accuracy) IsExp vs IMExp (Accuracy) IsBott vs IMBott (Accuracy) Best 1 vs Best 2 vs Best 3 (Accuracy) 

SML 0.11 /  0.89  (0.94) 0.01 /  0.99  (0.94) 0.04 /  0.96  (0.92) 0.01 /  0.85  / 0.14 (0.79) 

ABC 0.78  / 0.23 (0.93) 0.19 /  0.82  (0.91) 0.49 /  0.51  (0.89) 0.13 /  0.61  / 0.26 (0.87) 

     

 Agkistrodon contortrix 

 1 2 3 Final 

 Is vs IM (Accuracy) IsExp vs IMExp (Accuracy) IsBott vs IMBott (Accuracy) Best 1 vs Best 2 vs Best 3 (Accuracy) 

SML 0.03 /  0.97  (0.79) 0.00 /  1.00  (0.85) 0.00 /  1.00  (0.79) 0.12 / 0.01 /  0.87  (0.79) 

ABC 0.59  / 0.42 (0.76) 0.08 /  0.92  (0.86) 0.18 /  0.82  (0.77) 0.33 / 0.01 /  0.66  (0.78) 

 
 
Table 4:  Parameter priors, posterior estimates and R result calculated with the cross-validation 
experiment for the two snake species complexes (Sanger data). See  Supplementary Table 1 
for a complete list of priors and parameters. 

Agkistrodon contortrix 

Paramater Prior (min – max) 2.50% Median Mean Mode 97.50% r 

Ne0.pop1 20,000 – 1,000,000 26,112 123,258 140,965 77,843 325,493 0.45 

Ne0.pop2 20,000 – 1,000,000 92,136 491,649 506,789 202,242 988,100 0.19 

Ne1.pop1 1,000 – 10,000 1,360 7,030 6,637 8,902 9,924 0.06 

Ne2.pop1 20,000 – 1,000,000 5,895 556,886 535,324 883,327 967,817 0.01 

Ne1.pop2 1,000 – 10,000 1,809 6,932 6,612 9,094 9,910 0.12 

Ne2.pop2 20,000 – 1,000,000 303,312 710,668 691,052 850,608 983,683 0.34 

join1 60,000 – 3,000,000 285,633 1,625,645 1,611,305 2,039,677 2,874,342 0.06 

t.Ne1.pop1 9,000 – 300,000 31,942 127,478 139,292 99,724 289,616 0.46 

t.Ne2.pop1 9,000 – 300,000 73,265 191,863 198,353 148,644 346,239 0.38 
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t.Ne1.pop2 9,000 – 300,000 36,938 132,674 140,750 106,220 271,105 0.28 

t.Ne2.pop2 9,000 – 300,000 74,227 198,593 197,694 202,263 316,021 0.06 

mig0.1_2 0 – 2 0.76 1.5 1.47 1.75 2.06 0.18 

mig0.2_1 0 – 2 0.07 1.05 1.04 1.75 1.95 0.06 

        

Agkistrodon piscivorus 

Paramater Prior (min – max) 2.50% Median Mean Mode 97.50% r 

Ne0.pop1 10,000 – 500,000 104,779 258,656 269,769 198,668 475,458 0.4 

Ne0.pop2 10,000 – 500,000 59,975 216,254 236,734 130,139 475,953 0.47 

Ne1.pop1 1,000 – 10,000 3,534 41,156 42,827 32,328 89,432 0.42 

Ne1.pop2 1,000 – 10,000 8,510 50,965 50,489 54,790 91,127 0.49 

Ne2.pop2 10,000 – 1,000,000 163,818 552,602 556,057 564,831 956,823 0.05 

join1 9,9000 – 9,900,000 276,722 4,627,486 4,741,277 1,325,740 9,626,987 0.55 

t.Ne1.pop1 9,000 – 210,000 20,944 104,030 109,209 53,650 210,963 0.35 

t.Ne1.pop2 9,000 – 210,000 -414 79,993 86,828 27,249 195,189 0.53 

t.Ne2.pop2 9,900 – 9,900,000 246,730 4,629,289 4,743,890 1,309,786 9,653,230 0.56 

mig0.1_2 0 – 2 0.19 0.87 0.93 0.72 1.91 0.28 

mig0.2_1 0 – 2 0.03 0.74 0.8 0.51 1.75 0.29 
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Figures 

 
Figure 1 : work-flow of the main simulation functions of PipeMaster and schematic            
representation of the simulated models in the toy example. (a) work-flow of the sim.ms.sumstat              
function; (b) schematic representation of the diversification models simulated in the toy example;             
(c) work-flow of the  sim.coaltrees  function; (d) work-flow of the  sim.msABC.sumstat  function. 
 

 
Figure 2:  Distribution maps and best model for each data set analyzed in this study. 
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Figure 3:  Schematic representation of the diversification models tested in the two  Agkistrodon 
species complexes and  Dermatonotus muelleri . Dotted line indicate the six models tested for  A. 
contortrix  and  A. piscivorus  complex. For  D. muelleri  we tested all 10 models. See 
Supplementary Table 1  for a complete list of priors and parameters. 
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Figure 4:  Results of the simulation experiment to compare the accuracy of ABC and SML for 
model inference in different conditions. The y-axis represents the probability of the true model, 
the x-axis represent different data dimensions. Each box plot represent probabilities of the true 
model for 100 pseudo observed data, 10 per model. For the ABC analysis, 100 simulations are 
retained in the rejection step, for the SML all simulations are used for algorithm training. (a) 
estimates performed with 1K simulations per model totalizing 10,000 simulations in the 
reference table. (b) estimates performed with 10K simulations per model totalizing 100,000 
simulations in the reference table. (c) estimates performed with 100K simulations per model 
totalizing 1,000,000 simulations in the reference table. 
 

 
Figure 5:  Results of the simulation experiment to evaluate the influence of number of loci and 
tolerance values on parameter estimates of ABC and rejection with SML. The y-axis represents 
the correlation between estimated and true values for 100 pesudo-observed data for the 11 
parameters of the model. (a) estimates are performed by retaining 10,000 closest simulations. 
(b) estimates are performed by retaining 1,000 closest simulations. (c) estimates are performed 
by retaining 100 closest simulations. 
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